
 

Diagrammi delle caratteristiche di sollecitazione di una trave piana soggetta a un 

carico distribuito triangolare 

 

Tracciare i diagrammi delle caratteristiche di 

sollecitazione per il sistema a lato, utilizzando i 

dati forniti direttamente in Figura 1. 

 

 

 

 

 

 

1) Cominciamo osservando che la trave è isostatica: la molteplicità totale dei vincoli (𝑀 = 2 + 1 =

3 in quanto ci sono una cerniera in 𝐴 e un carrello in 𝐵) è pari ai gradi di libertà del sistema (𝐺 =

3 essendo la trave un corpo rigido bidimensionale) 

 

2) Dobbiamo ora risolvere il problema statico 

▪ Il modulo 𝑞 del carico segue la legge 

𝑞(𝑥) =
𝑞

𝐿
𝑥 

siccome esso è triangolare (varia cioè come una retta, il cui coefficiente angolare, in questo 

caso specifico, è dato dal rapporto tra il carico in 𝐵, pari a 𝑞, e la distanza 𝐴𝐵, pari a 𝐿 

▪ Il carico concentrato equivalente a 𝑞⃗ ha quindi modulo 
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e va applicato a distanza 𝑥𝑅 da 𝐴 pari a 
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▪ Sostituendo ai vincoli le loro reazioni e al carico distribuito il suo concentrato equivalente 

si ottiene il diagramma in Figura 2 

 

▪ Allora, scelto 𝐴 come polo dei momenti e adottata la convenzione sui segni illustrata in 

Figura 3, il problema statico assume la forma 

{
𝛴𝑋⃗ = 0⃗⃗

𝛴𝑌⃗⃗ = 0⃗⃗

𝛴𝑀⃗⃗⃗𝐴 = 0⃗⃗

   ⇒    
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3) Le caratteristiche di sollecitazione sono allora 

▪ Sforzo normale 

𝑵(𝒙) = 𝟎 

▪ Sforzo di taglio 
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Essendo −∫ 𝑞(𝑥)
𝑥

0
𝑑𝑥 la forza verticale, dovuta al carico 𝑞⃗, che grava sul tratto di trave 

compreso tra 0 e 𝑥 

▪ Momento flettente 
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Essendo 𝑥 il braccio di 𝑌𝐴 rispetto al polo 𝐴 e (𝑥 −
2

3
𝑥) il braccio, sempre rispetto ad 𝐴, 

della forza dovuta al carico 𝑞⃗ sul tratto di trave compreso tra 0 e 𝑥 

 

4) I relativi diagrammi sono quindi 

 

 

 

 

 

 

 

 

 

 

 

 

 

dai quali osserviamo che, come prevede la teoria, la funzione momento presenta uno zero in 

corrispondenza di un estremo della funzione taglio. 
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